efi

Flashrom 0.9.4 released - Flashing BIOS/ROM chips from the Unix/Linux command line using various programmers

flashrom logo

Forgot to mention this here: We released flashrom 0.9.4 a few days ago, the latest release of the open-source, GPL'd ROM chip flashing software for Linux, *BSD, DOS, and partially also Windows (work in progress, though).

Here's a quick summary of the release announcement. Some of the noteworthy news items include:

  • Support for new programmers: OpenMoko Neo1973/Neo FreeRunner debug board version 2 or 3, Olimex ARM-USB-TINY, ARM-USB-TINY-H, ARM-USB-OCD, and ARM-USB-OCD-H, Open Graphics Project development card (OGD1), Angelbird Wings PCIe SSD/88SX7042, ITE IT85xx embedded controllers, Intel NICs with parallel flash.
  • Dozens of added flash chips, chipsets, mainboards.
  • Improved Dediprog SF100 support.
  • Add support for more than one Super I/O or EC per machine.
  • Always read the flash chip before writing, for improved error checking and faster programming.
  • Enable write support on NVIDIA MCP6x/MCP7x.
  • Lots of bugfixes, documentation fixes, internal improvements, etc.

Get the latest release tarball, or download and build the most recent version via Subversion:

  $ svn co svn://flashrom.org/flashrom/trunk flashrom
  $ cd flashrom
  $ make

I already updated the Debian package to 0.9.4 (it has also already migrated to Debian testing and Ubuntu), other people have updated Fedora, Gentoo, NetBSD etc. etc.

There's already a huge amount of patches queued for the next release, including support for even more programmers, PowerPC support (tested on Mac Mini and others), and of course the usual "more boards, more chips" items...

flashrom 0.9.2 released -- Open-Source, crossplatform BIOS / EEPROM / flash chip programmer

The long-pending 0.9.2 version of the open-source, cross-platform, commandline flashrom utility has been released.

From the announce:

New major user-visible features:
* Dozens of newly supported mainboards, chipsets and flash chips.
* Support for Dr. Kaiser PC-Waechter PCI devices (FPGA variant).
* Support for flashing SPI chips with the Bus Pirate.
* Support for the Dediprog SF100 external programmer.
* Selective blockwise erase for all flash chips.
* Automatic chip unlocking.
* Support for each programmer can be selected at compile time.
* Generic detection for unknown flash chips.
* Common mainboard features are now detected automatically.
* Mainboard matching via DMI strings.
* Laptop detection which triggers safety measures.
* Test flags for all part of flashrom operation.
* Windows support for USB-based and serial-based programmers.
* NetBSD support.
* DOS support.
* Slightly changed command line invocation. Please see the man page for details.

Experimental new features:
* Support for some NVIDIA graphics cards.
* Chip test pattern generation.
* Bit-banging SPI infrastructure.
* Nvidia MCP6*/MCP7* chipset detection.
* Support for Highpoint ATA/RAID controllers.

Infrastructural improvements and fixes:
* Lots of cleanups.
* Various bugfixes and workarounds for broken third-party software.
* Better error messages.
* Reliability fixes.
* Adjustable severity level for messages.
* Programmer-specific chip size limitation warnings.
* Multiple builtin frontends for flashrom are now possible.
* Increased strictness in board matching.
* Extensive selfchecks on startup to protect against miscompilation.
* Better timing precision for touchy flash chips.
* Do not rely on Linux kernel bugs for mapping memory.
* Improved documentation.
* Split frontend and backend functionality.
* Print runtime and build environment information.

The list of supported OSes and architectures is slowly getting longer, e.g. these have been tested: Linux, FreeBSD, NetBSD, DragonFly BSD, Nexenta, Solaris and Mac OS X. There's partial support for DOS (no USB/serial flashers) and Windows (no PCI flashers). Initial (partial) PowerPC and MIPS support has been merged, ARM support and other upcoming.

Also, the list of external (non-mainboard) programmers increases, e.g. there is support for NICs (3COM, Realtek, SMC, others upcoming), SATA/IDE cards from Silicon Image and Highpoint, some NVIDIA cards, and various USB- or parallelport- or serialport- programmers such as the Busirate, Dediprog SF100, FT2232-based SPI programmers and more.

More details at flashrom.org and in the list of supported chips, chipsets, baords, and programmers.

I uploaded an svn version slightly more recent than 0.9.2 to Debian unstable, which should reach Debian testing (and Ubuntu I guess) soonish.

Flashrom 0.9 release - Flashing your BIOS from the Unix/Linux command line

I have mentioned the flashrom utility in my blog in the past. This is a small command line tool which allows you to update your BIOS/coreboot/firmware chips without opening the computer and without any special boot procedures.

Yesterday, flashrom 0.9 was finally released. Here's a short passage from the release announcement:

After nine years of development and constant improvement, we have added support for every BIOS flash ROM technology present on x86 mainboards and every flash ROM chip we ever saw in the wild.

Highlights of flashrom include:

  • Parallel, LPC, FWH and SPI flash interfaces.
  • 157 flash chip families and half a dozen variants of each family.
  • Flash chip package agnostic. DIP32, PLCC32, DIP8, SO8/SOIC8, TSOP32, TSOP40 and more have all been verified to work.
  • 75 different chipsets, some with multiple flash controllers.
  • Special mainboard enabling code for dozens of nonstandard mainboards.
  • No physical access needed. root access is sufficient.
  • No bootable floppy disk, bootable CD-ROM or other media needed.
  • No keyboard or monitor needed. Simply reflash remotely via SSH.
  • No instant reboot needed. Reflash your ROM in a running system, verify it, be happy. The new firmware will be present next time you boot.
  • Crossflashing and hotflashing is possible as long as the flash chips are electrically and logically compatible (same protocol). Great for recovery.
  • Scriptability. Reflash a whole pool of identical machines at the same time from the command line. It is recommended to check flashrom output and error codes.
  • Speed. flashrom is much faster than vendor flash tools.
  • Supports Linux, FreeBSD, DragonFly BSD, Solaris, Mac OS X. Please refer to the README for build instructions.

Please note that rewriting your flash chip can be dangerous and flashrom developers make no guarantees whatsoever. That said, many users have successfully replaced proprietary tools such as awdflash, amiflash and afudos with flashrom.

Download: flashrom-0.9.0.tar.gz
SVN: svn co svn://coreboot.org/flashrom/trunk flashrom
Debian: apt-get install flashrom

Do yourself a favor and try flashrom next time you want to upgrade your BIOS. No more floppies or bootable CD-ROMs with DOS/Windows binaries or similar crap. Run flashrom conveniently from the Linux command line, or even via SSH or serial console if you want...

Google Tech Talks: coreboot (aka LinuxBIOS): The Free/Open-Source x86 Firmware

coreboot Google Tech Talk 2

Here's a nice opportunity for everyone to learn more about coreboot, a Free Software / Open Source firmware/BIOS for x86 PCs.

Ron Minnich, founder of the LinuxBIOS (now called coreboot) project, Peter Stuge of Stuge Konsult, and Stefan Reinauer of coresystems GmbH have given a presentation for the Google Tech Talks series recently. The topic was (of course) coreboot, its history, goals, features and technical details, surrounding tools and libraries such as flashrom and libpayload, as well as an automated test system for running a hardware test-suite upon every checkin in the coreboot repository.

coreboot Google Tech Talk 1

A video of the talk, aptly named coreboot (aka LinuxBIOS): The Free/Open-Source x86 Firmware (134 MB), is available from Youtube, get it for instance via:

  $ apt-get install youtube-dl
  $ youtube-dl http://www.youtube.com/watch?v=X72LgcMpM9k

The talk includes various demos of coreboot and various payloads you can use with coreboot. One nice example is the TINT payload, a Tetris-like game for Linux (apt-get install tint for the curious), which has been reworked to be usable as a coreboot payload.

coreboot Google Tech Talk 3

So, yes, you can now put Tetris in your BIOS ROM chip and play it from there (no hard drive required).

Other demos included some cluster nodes with coreboot, and a "normal" x86 desktop board booting coreboot + Linux in a very few seconds (much room left for optimizing there though, if you really want to get into fast booting).

Check out the full talk for more infos, and if you're willing to give it a try (see the list of currently supported boards), contact us on the mailing list or join the #coreboot IRC channel on Freenode.

LinuxBIOS at LinuxTag 2007

LinuxBIOS ROM Chip Logo

If you're coming to LinuxTag 2007 in Berlin (May 30 - June 2), you might want to also visit the LinuxBIOS booth (Hall 12, Stand 80).

We will be showing a couple of different systems all using LinuxBIOS to boot. There is a boot time competition in the booth (nice T-shirts to win!).

On Saturday there's a hands-on LinuxBIOS workshop by Peter Stuge titled "Bring your EPIA, EPIA-M or EPIA-MII board and make it run LinuxBIOS!". Please register in advance at LinuxBIOS booth (Hall 12, Stand 80).

If you always wanted to know what this LinuxBIOS stuff is all about — here's your chance to find out!

Syndicate content